MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

نویسندگان

  • Kathleen A. Bridges
  • Xingxing Chen
  • Huifeng Liu
  • Crosby Rock
  • Thomas A. Buchholz
  • Stuart D. Shumway
  • Heath D. Skinner
  • Raymond E. Meyn
چکیده

Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The novel Chk1 inhibitor MK-8776 sensitizes human leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair.

Interactions between the novel Chk1 inhibitor MK-8776 and the histone deacetylase (HDAC) inhibitor (HDACI) vorinostat were examined in human leukemia cells harboring wild-type (wt) or deficient p53. MK-8776 synergistically potentiated vorinostat-mediated apoptosis in various p53-wt or -deficient leukemia cell lines, whereas p53 knockdown by short hairpin RNA (shRNA) sensitized p53-wt cells to l...

متن کامل

MK-8776, a novel Chk1 inhibitor, exhibits an improved radiosensitizing effect compared to UCN-01 by exacerbating radiation-induced aberrant mitosis

Checkpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G2/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, ...

متن کامل

Cancer Therapy: Preclinical MK-1775, a Novel Wee1 Kinase Inhibitor, Radiosensitizes p53-Defective Human Tumor Cells

Purpose: Radiotherapy is commonly used to treat a variety of solid tumors. However, improvements in the therapeutic ratio for several disease sites are sorely needed, leading us to assess molecularly targeted therapeutics as radiosensitizers. The aim of this study was to assess the wee1 kinase inhibitor, MK-1775, for its ability to radiosensitize human tumor cells. Experimental Design: Human tu...

متن کامل

A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase.

DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subs...

متن کامل

Inhibition of Chk1 with the small molecule inhibitor V158411 induces DNA damage and cell death in an unperturbed S-phase

Chk1 kinase is a critical component of the DNA damage response checkpoint and Chk1 inhibitors are currently under clinical investigation. Chk1 suppresses oncogene-induced replication stress with Chk1 inhibitors demonstrating activity as a monotherapy in numerous cancer types. Understanding the mechanism by which Chk1 inhibitors induce DNA damage and cancer cell death is essential for their futu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011